August 25 , 2016
by Andrea Cau
Immaginate di essere sul bordo di un canyon profondissimo, e di voler costruire un ponte che raggiunga l'altro lato del canyon. Non è possibile scendere sul fondo del canyon. Avete a disposizione solamente delle travi e delle funi. Come costruire il ponte partendo solamente da un lato e non potendo in alcun modo innalzare dei piloni nel mezzo del baratro?
Dovremo costruire fissando tutte le impalcature al nostro lato del canyon, e lavorando sempre e solamente dal nostro lato del canyon. A che tipo di forze sarebbero soggetti gli elementi del ponte mano a mano che esso si estende in avanti sopra il baratro?
Rappresentiamo il baratro con la linea rosa nella figura qui sotto. Il margine del canyon in cui siete voi è il punto O: all'inizio, voi non potete andare più avanti di quel punto, ma potete costruire una impalcatura (linee rosse) che si proietta sopra di voi e dalla quale potete far calare i vari elementi per la costruzione del ponte, che si estenderà in avanti a partire dal punto O.
Immaginate di aver costruito una prima parte del ponte (che si estende sopra la zona grigio scuro del baratro nella figura). I vostri elementi da costruzione sono rappresentati dall'esagono verde, posto all'estremità dell'impalcatura rossa. Nel punto Am, l'esagono tenderà a cadere in base al proprio peso (freccia verde chiaro). Per mantenere l'esagono in quella posizione, occorre applicare una forza contraria (freccia rosa). Siccome non potete sollevarvi nel vuoto per applicare tale forza, siete costretti a costruire una carrucola posta verticalmente sopra O, e da lì, tramite funi, generare la forza che mantiene l'esagono in posizione. La forza rosa è quindi la risultante verticale della forza di tensione applicata dalla fune della carrucola (tensione che si applica lungo la linea blu Y1-Am). Mano a mano che la vostra costruzione procede in avanti, vi trovate con il problema che più l'impalcatura si estende in avanti, più il lavoro svolto con la carrucola diventa poco efficace, perché la componente orizzontale “inutile” del lavoro della fune è maggioritaria su quella verticale “utile”. Per ovviare a questo inconveniente puramente geometrico, si può sollevare la carrucola in posizione Y2, per acquisire maggiore componente verticale, l'unica che effettua il lavoro di mantenere l'esagono in posizione. La morale di questa storiella vagamente ingegneristica è che tanto più si estende in avanti il braccio orizzontale dell'impalcatura, tanto maggiore dovrete sollevare in alto la carrucola per avere un lavoro efficace per tenere l'esagono in posizione di lavoro.
Se avete letto il precedente post, probabilmente avrete capito dove voglio arrivare. In quel post, concludevo che Spinosaurus differisce dagli altri megalosauridi, inclusi i baryonychini, nell'allungamento della parte pre-sacrale del corpo, ma che probabilmente è comparabile agli altri taxa nelle dimensioni generali dell'arto posteriore. Tradotto nella metafora del ponte e dell'impalcatura, se AO è la gamba di un megalosauroide generico (con A = acetabolo e O = appoggio dei piedi a terra) e la punta del muso è l'esagono verde, risulta che tanto più l'esagono si estende in avanti (a parità di altezza della gamba) e tanto maggiore sarà la tensione dei muscoli epiassiali e dei legamenti nucali e spinali per mantenere la testa in quella posizione. Questi muscoli sono l'analogo della fune della carrucola. Vedete quindi che all'aumentare della lunghezza della parte pre-sacrale dell'animale, il lavoro dei legamenti diventa progressivamente meno efficace. Per ovviare a questa perdita di efficacia, una soluzione è quella di sollevare progressivamente la posizione del punto di ancoraggio dei legamenti rispetto all'acetabolo. E dove ancoràno questi legamenti? Sulle spine neurali! Pertanto, questo modello predice che un animale “iper-allungato” rispetto alla gamba, come Spinosaurus, dovrà evolvere delle spine neurali molto alte per aumentare l'efficacia dei legamenti che tengono sospesa la testa.
Ed è esattamente quello che osserviamo con Spinosaurus.
Il rettangolo grigio scuro è proporzionato alle dimensioni (altezza e lunghezza presacrale) di un megalosauroide “classico” (usando la ricostruzione scheletrica di Megalosaurus realizzata da Scott Hartman come riferimento), il piccolo rettangolo grigio chiaro indica l'incremento in lunghezza in un baryonychino (usando la ricostruzione scheletrica di Baryonyx realizzata da Scott Hartman come riferimento), mentre il rettangolo nero indica l'estensione ulteriore di Spinosaurus (usando la ricostruzione scheletrica proposta da Ibrahim et al. 2014). Vedete come il modello predice che le spine neurali di Baryonyx non siano molto più alte rispetto a Megalosaurus, mentre Spinosaurus risulterà avere spine neurali molto più alte di ambo gli altri megalosauroidi.
Questa interpretazione quindi indica che le spine neurali di Spinosaurus non sono un “vezzo” o “optional” della sua anatomia, ma una necessaria conseguenza biomeccanica delle sue inusuali proporzioni corporee. Le spine neurali iper-elevate di Spinosaurus si sono evolute come ancoraggio di legamenti epiassiali necessari per bilanciare una leva corporea molto “sbilanciata” in avanti.
Dettaglio non marginale, questo modello implica che tutte le forze peso di Spinosaurus si applichino sull'arto posteriore, quindi che esso sia bipede.
http://theropoda.blogspot.ru/2016/08/il-canyon-la-carrucola-e-lo-spinosauro.html
|