DINOWEB - dinosaurs web-site  

Complete Data Base of Paleozoic and Mesozoic Tetrapods.
Paleo-News and illustrations. Big electronic PDF-library.

line decor
line decor

Download PDF Paleolibrary


?????????? ?????????
сайт о динозаврах
??????? ?????????

рейтинг сайтов
Free Hit Counters

Free Counter
hit counter javascript

myspace hit counter
Powered by counter.bloke.com

Locations of visitors to this page


Yes, sauropod neck vertebrae got longer as the animals grew up

December 20 , 2016:

byMatt Wedel

The question of whether sauropod cervicals got longer through ontogeny came up in the comment thread on Mike’s “How horrifying was the neck of Barosaurus?” post, and rather than bury this as a comment, I’m promoting it to a post of its own.

The short answer is, yeah, in most sauropods, and maybe all, the cervical vertebrae did lengthen over ontogeny. This is obvious from looking at the vertebrae of very young (dog-sized) sauropods and comparing them to those of adults. If you want it quantified for two well-known taxa, fortunately that work was published 16 years ago – I ran the numbers for Apatosaurus and Camarasaurus to see if it was plausible for Sauroposeidon to be synonymous with Pleurocoelus, which was a real concern back in the late ’90s (the answer is a resounding ‘no’). From Wedel et al. (2000b: pp. 368-369):

Despite the inadequacies of the type material of Pleurocoelus, and the uncertainties involved with referred material, the genus can be distinguished from Brachiosaurus and Sauroposeidon, even considering ontogenetic variation. The cervical vertebrae of Pleurocoelus are uniformly short, with a maximum EI of only 2.4 in all of the Arundel material (Table 4). For a juvenile cervical of these proportions to develop into an elongate cervical comparable to those of Sauroposeidon, the length of the centrum would have to increase by more than 100% relative to its diameter. Comparisons to taxa whose ontogenetic development can be estimated suggest much more modest increases in length.

Carpenter & McIntosh (1994) described cervical vertebrae from juvenile individuals of Apatosaurus and Camarasaurus. Measurements and proportions of cervical vertebrae from adults and juveniles of each genus are given in Table 4. The vertebrae from juvenile specimens of Apatosaurus have an average EI 2.0. Vertebrae from adult specimens of Apatosaurus excelsus and A. louisae show an average EI of 2.7, with an upper limit of 3.3. If the juvenile vertebrae are typical for Apatosaurus, they suggest that Apatosaurus vertebrae lengthened by 35 to 65% relative to centrum diameter in the course of development.

The vertebrae from juvenile specimens of Camarasaurus have an average EI of 1.8 and a maximum of 2.3. The relatively long-necked Camarasaurus lewisi is represented by a single skeleton, whereas the shorter-necked C. grandis, C. lentus, and C. supremus are each represented by several specimens (McIntosh, Miller, et al. 1996), and it is likely that the juvenile individuals of Camarasaurus belong to one of the latter species. In AMNH 5761, referred to C. supremus, the average EI of the cervical vertebrae is 2.4, with a maximum of 3.5. These ratios represent an increase in length relative to diameter of 30 to 50% over the juvenile Camarasaurus.

If the ontogenetic changes in EI observed in Apatosaurus and Camarasaurus are typical for sauropods, then it is very unlikely that Pleurocoelus could have achieved the distinctive vertebral proportions of either Brachiosaurus or Sauroposeidon.

A few things about this:
From what I’ve seen, the elongation of the individual vertebrae over ontogeny seems to be complete by the time sauropods are 1/2 to 2/3 of adult size. I get this from looking at mid-sized subadults like CM 555 and the hordes of similar individuals at BYU, the Museum of Western Colorado, and other places. So to get to the question posed in the comment thread on Mike’s giant Baro post – from what I’ve seen (anecdata), a giant, Supersaurus-class Barosaurus would not necessarily have a proportionally longer neck than AMNH 6341. It might have a proportionally longer neck, I just haven’t seen anything yet that strongly suggests that. More work needed.
Juvenile sauropod cervicals are not only shorter than those of adults, they also have less complex pneumatic morphology. That was the point of the figure at the top of the post. But that very simple generalization is about all we know so far – this is an area that could use a LOT more work.
I’ve complained before about papers mostly being remember for one thing, even if they say many things. This is the canonical example – no-one ever seems to remember the vertebrae-elongating-over-ontogeny stuff from Wedel et al. (2000b). Maybe that’s an argument for breaking up long, kitchen-sink papers into two or more separate publications?


Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45:343-388.



Hosted by uCoz